Exam. Code : 211001 Subject Code : 4848

M.Sc. Mathematics 1st Semester

ALGEBRA—I

Paper-MATH-553

Time Allowed—Three Hours] [Maximum Marks—100

Note :— Candidates are required to attempt FIVE questions, selecting at least ONE question from each section. The fifth question may be attempted from any section.

SECTION-A

- (a) State and prove Lagrange's theorem and also prove that every group of order prime is cyclic. 10
 - (b) Prove that subgroup of a cyclic group is cyclic.

(c) Show that relation of normality is not transitive.

2. (a) If G is a group such that G/Z(G) is cyclic where Z(G) is centre of the group G then prove that G is abelian. Also find the cardinality of the centre of a group of order 15.

4241(2119)/HH-6974

(Contd.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjak

- (b) If H and K are finite subgroups of a group G, then prove that $O(HK) = \frac{O(H).O(K)}{O(H \cap K)}$. 7
- (c) Give an example to show that union of two subgroups of a group G need not be a subgroup of G.
 3

SECTION-B

- 3. (a) Show that A_n is simple $\forall n \ge 5$.
 - (b) Let G be a group and leg G' be the derived group of G. If H ⊲ G and G/H is abelian then prove that G' ⊆ H.
 - (c) Find all non-isomorphic abelian groups of order 360.
 - (d) If G is a cyclic group of order mn, where (m, n) = 1, then prove that G ≅ H×K, where H is a subgroup of order m, and K is a subgroup of order n.
- 4. (a) Prove that the alternating group A_n is generated by the set of all 3-cycles in S_n.
 - (b) Show that $GL(2, \mathbb{R})/SL(2, \mathbb{R}) \cong \mathbb{R}^*$. 6
 - (c) If H and K both are normal subgroups of a group G such that H ⊆ K, then show that :

$$G/K \cong (G/H)/(K/H).$$
 6

(d) Prove that the product of two even permutations is again an even permutation. 2

4241(2119)/HH-6974

2

(Contd.)

10

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

SECTION-C

5.	(a)	Prove that subgroup and factor group of a solval	ble
		group is again solvable.	6
	(b)	Show that a simple group is solvable if and on	nly
		if it is cyclic.	5
	(c)	State and prove Sylow first theorem.	6
	(d)	If G is a finite p-group then prove that it h	as
		non-trivial centre.	3
6.	(a)	State and prove Jordan Holder theorem.	10
	(b)	Write the class equation of Dihedral group	of
		order 8.	5
	(c)	Let G be a group of order 108. Show that the	ere
		exists a normal subgroup of order 9 or 27.	5
		SECTION—D	
7.	(a)	Prove that an ideal M of a commutative ring	R
		with unity is maximal ideal if and only if R/M	is
		a field.	10
	(b)	Prove that 12 \mathbb{Z} is an ideal of the ring 3 \mathbb{Z} a	nd
		find all ideals of the ring $3\mathbb{Z}/12\mathbb{Z}$.	5
	(c)	Is there any integral domain which has 6 elements	s ?
		· ·	5
4241	(2119)/HH-6974 3 (Con	td.)

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

- 8. (a) Prove that every nilpotent ideal is nil ideal and give an example to show that converse need not be true.
 - (b) Define Boolean ring and let R be a Boolean ring, show that each prime ideal P ≠ R is maximal.
 - (c) Let f be a homomorphism of a ring R onto ring R'. Show that R/ker f ≅ R'.
 - (d) Let F be a field. Prove that (0) i.e. ideal generated by 0 is a prime ideal in F.

6

www.a2zpapers.com www.a2zpapers.com ad free old Question papers gndu, ptu hp board, punjab

4